ASTM E2060-06(2014)
Standard Guide for Use of Coal Combustion Products for Solidification/Stabilization of Inorganic Wastes

Standard No.
ASTM E2060-06(2014)
Release Date
2006
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM E2060-22
Latest
ASTM E2060-22
Scope

4.1 General—CCPs can have chemical and mineralogical compositions that are conducive to use in the chemical stabilization of trace elements in wastes and wastewater. These elements include, but are not limited to, arsenic, barium, boron, cadmium, chromium, cobalt, lead, molybdenum, nickel, selenium, vanadium, and zinc. Chemical stabilization may be accompanied by solidification of the waste treated. Solidification is not a requirement for the stabilization of many trace elements, but does offer advantages in waste handling and in reduced permeability of the stabilized waste. This guide addresses the use of CCPs as a stabilizing agent without addition of other materials. S/S is considered the BDAT for the disposal of some wastes that contain metals since they cannot be destroyed by other means (2).

4.1.1 Advantages of Using CCPs—Advantages of using CCPs for waste stabilization include their ready availability in high volumes, generally good product consistency from one source, and easy handling. CCPs vary depending on the combustion or emission control process and the coal or sorbents used, or both, and CCPs contain trace elements, although usually at very low concentrations. CCPs are generally an environmentally suitable materials option for waste stabilization, but the compatibility of a specific CCP must be evaluated with individual wastes or wastewater through laboratory-scale tests followed by full-scale demonstration and field verification. CCPs suitable for this chemical stabilization have the ability to incorporate large amounts of free water into hydration products. CCPs that exhibit high pHs (>11.5) offer advantages in stabilizing trace elements that exist as oxyanions in nature (such as arsenic, boron, chromium, molybdenum, selenium, and vanadium) and trace elements that form oxyhydroxides or low-solubility precipitates at high pH (such as lead, cadmium, barium, and zinc). Additionally, CCPs that exhibit cementitious properties offer advantages in solidifying CCP-waste mixtures as a result of the hydration reactions of the CCP. These same hydration reactions frequently result in the formation of mineral phases that stabilize or chemically fix the trace elements of concern.

4.2 Chemical/Mineralogical Composition—Since CCPs are produced under conditions of high temperature, reactions with water during contact with water or aqueous solutions can be expected. Mineral formation may contribute to the chemical fixation and/or solidification achieved in the waste stabilization process. One example of this type of chemical fixation is achieved by ettringite formation. Reduced leachability of several trace elements has been correlated with ettringite formation in hydrated high-calcium CCPs typically from U.S. lignite and subbituminous coal, FGD materials, and ASC by-products. These materials are the best general candidates for use in this chemical fixation process. Lower-calcium CCPs may also be effective with addition of a calcium source that maintains the pH above 11.5. Ettringite forms as a result of hydration of many high-calcium CCPs, so adequate water must be available for the reaction to occur. The mineral and amorphous phases of CCPs contribute soluble elements required for ettringite formation, and the ettringite formation rate can vary based on the mineral and amorphous phase compositions.