ASTM E2931-13
Standard Test Method for Limiting Oxygen (Oxidant) Concentration of Combustible Dust Clouds

Standard No.
ASTM E2931-13
Release Date
2013
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM E2931-13(2019)
Latest
ASTM E2931-13(2019)
Scope

5.1 This test method provides a procedure for performing laboratory tests to evaluate relative deflagration parameters of dusts.

5.2 Knowledge of the limiting oxygen (oxidant) concentration is needed for safe operation of some chemical processes. This information may be needed in order to start up, shut down or operate a process while avoiding the creation of flammable dust-gas atmospheres therein, or to pneumatically transport materials safely. NFPA 69 provides guidance for the practical use of LOC data, including the appropriate safety margin to use.

5.3 Since the LOC as measured by this method may vary with the energy of the ignitor and the propagation criteria, the LOC should be considered a relative rather than absolute measurement.

5.4 If too weak an ignition source is used, the measured LOC would be higher than the “true” value and would not be sufficiently conservative. This is an ignitability limit rather than a flammability limit, and the test could be described as “underdriven.” Ideally, the ignition energy is increased until the measured LOC is independent of ignition energy (that is, the “true” value). However, at some point the ignition energy may become too strong for the size of the test chamber, and the system becomes “overdriven.” When the ignitor flame becomes too large relative to the chamber volume, a test could appear to result in an explosion, while it is actually just dust burning in the ignitor flame with no real propagation beyond the ignitor (1-3).5 This LOC value would be overly conservative.

5.5 The recommended ignition source for measuring the LOC of dusts in 20-L chambers is a 2500-J pyrotechnic ignitor.6 This ignitor contains 0.6 g of a powder mixture of 40 % zirconium, 30 % barium nitrate, and 30 % barium peroxide. Measuring the LOC at several ignition energies will provide information on the possible overdriving of the system to evaluate the effect of possible overdriving in a 20-L chamber, comparison tests may also be made in a larger chamber such as a 1-m3 chamber (1-3).

5.6 The values obtained by this testing technique are specific to the sample tested (particularly the particle size distribution) and the method used and are not to be considered intrinsic material constants.

Note 1Much of the previously published LOC data (4). were obtained using a spark ignition source in a 1.2-L Hartmann chamber and may not be sufficiently conservative. The European method of LOC determination EN 14034–4