ASTM F1165-98(2004)
Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts

Standard No.
ASTM F1165-98(2004)
Release Date
1998
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM F1165-10
Latest
ASTM F1165-20
Scope

With the advent of thick, highly angled aircraft transparencies, multiple imaging has been more frequently cited as an optical problem by pilots. Secondary images (of outside lights), often varying in intensity and displacement across the windscreen, can give the pilot deceptive optical cues of his altitude, velocity, and approach angle, increasing his visual workload. Current specifications for multiple imaging in transparencies are vague and not quantitative. Typical specifications state multiple imaging shall not be objectionable.

The angular separation of the secondary and primary images has been shown to relate to the pilotrsquo;acceptability of the windscreen. This procedure provides a way to quantify angular separation so a more objective evaluation of the transparency can be made. It may be used for research of multiple imaging, quantifying aircrew complaints, or as the basis for windscreen specifications.

It should be noted that the basic multiple imaging characteristics of a windscreen are determined early in the design phase and are virtually impossible to change after the windscreen has been manufactured. In fact, a perfectly manufactured windscreen has some multiple imaging. For a particular windscreen, caution should be taken in the selection of specification criteria for multiple imaging, as the inherent multiple imaging characteristics may vary significantly depending upon windscreen thickness, material, or installation angle. Any tolerances that might be established should allow for inherent multiple imaging characteristics.


FIG. 2 Schematic Drawing of Component Layout for Measuring Multiple Imaging Angular Displacement

1.1 This test method covers measuring the angular separation of secondary images from their respective primary images as viewed from the design eye position of an aircraft transparency. Angular separation is measured at 49 points within a 20 by 20176; field of view. This procedure may be performed on any aircraft transparency in a laboratory or in the field. However, the procedure is limited to a dark environment. Laboratory measurements are done in a darkened room and field measurements are done at night.

1.2 The values stated in acceptable metric units are to be regarded as the standard. The values in parentheses are for information only.

1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

ASTM F1165-98(2004) history

  • 2020 ASTM F1165-20 Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts
  • 2015 ASTM F1165-15 Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts
  • 2010 ASTM F1165-10 Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts
  • 1998 ASTM F1165-98(2004) Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts
  • 1998 ASTM F1165-98 Standard Test Method for Measuring Angular Displacement of Multiple Images in Transparent Parts



Copyright ©2024 All Rights Reserved