ASTM D5083-10e1
Standard Test Method for Tensile Properties of Reinforced Thermosetting Plastics Using Straight-Sided Specimens

Standard No.
ASTM D5083-10e1
Release Date
2010
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM D5083-17
Latest
ASTM D5083-17
Scope

4.1 This test method is intended for tensile testing of fiber-reinforced thermosetting laminates. For injection molded thermoplastics, both reinforced and unreinforced, Test Methods D638 is recommended. For most unidirectional fiber reinforced laminates, Test Methods D3039/D3039M is preferred.

4.2 This test method is designed to produce tensile property data for quality control and research and development. Factors that influence the tensile properties, and should therefore be reported, are: material, methods of material and specimen preparation, specimen conditioning, test environment, speed of testing, void content, and volume percent reinforcement.

4.3 It is realized that a material cannot be tested without also specifying the method of preparation of that material. Hence, when comparative tests of materials per se are desired, the greatest care must be exercised to ensure that all samples are prepared in exactly the same way, unless the test is to include the effects of sample preparation. Similarly, for referee purposes or comparisons within any given series of specimen, care must be taken to secure the maximum degree of uniformity in details of preparation, treatment, and handling.

Note 6: Preparation techniques for reinforced thermosetting plastics can be found in the part of ISO 1268 appropriate to the manufacturing technique for the laminate.

4.4 Tensile properties may provide useful data for engineering design purposes. However, because of the high degree of sensitivity exhibited by many reinforced plastics to rate of straining and environmental conditions, data obtained by this test method cannot be considered valid for applications involving load-time scales or environments widely different from those of this test method. In cases of such dissimilarity, no reliable estimation of the limit of usefulness can be made for most plastics. This sensitivity to rate of straining and environment necessitates testing over a broad load-time scale (including impact and creep) and range of environmental conditions.

Note 7: Since the existence of a true elastic limit in plastics (as in many other organic materials and in many metals) is debatable, the propriety of applying the term “elastic modulus” in its quoted generally accepted definition to describe the “stiffness” or stress-strain characteristics of plastic materials is highly dependent on such factors as rate of application of stress, temperature, previous history of specimen, etc. However, stress-strain curves for plastics, determined as described in this test method, almost always show a linear region at low stresses. A straight line drawn tangent to this portion of the curve permits calculation of an elastic modulus of the usually defined type. Such a constant is useful if its arbitrary nature and dependence on time, temperature, and similar factors are realized.

4.5 For many materials, there may be a specification that requires the use of this test method, but with some procedural modifications that take precedence when adherin......