ASTM E2872-14
Standard Guide for Determining Cross-Section Averaged Characteristics of a Spray Using Laser-Diffraction Instruments in a Wind Tunnel Apparatus

Standard No.
ASTM E2872-14
Release Date
2014
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM E2872-14(2019)
Latest
ASTM E2872-14(2024)
Scope

5.1 This guide provides a means of using an LD instrument to obtain a droplet size distribution from a spray in gas co-flow that approximates a flux-sensitive sample.4

5.2 In many sprays, the experimenter shall account for spatial segregation of droplets by size. This guide provides a means of spatial averaging the droplet distribution.

5.3 The results obtained will be statistical in nature and refer to the time average of droplet size distribution of the entire spray.

5.4 This guide is used to calibrate a spray generation device to produce a desired droplet size distribution under prespecified environmental and co-flow conditions or characterize an unknown spray while minimizing the uncertainty in the measurement.

1.1 The purpose of this guide is to define a test procedure for applying the laser diffraction (LD) method to estimate an average droplet size distribution that characterizes the flux of liquid droplets produced by a specified spray generation device under specified gas co-flow conditions using a specified liquid. The intended scope is limited to artificially generated sprays with high speed co-flow. The droplets are assumed to be in the size range of 1 to 2000 µm in diameter and occur in sprays that are contained within a volume as small as a few cubic centimetres or as large as a cubic metre. The droplet sizes are assumed to be distributed non-uniformly within the spray volume.

1.2 This guide is intended primarily to guide measurement of performance of nozzles and atomizers using LD instruments.

1.3 Non-uniform sprays require measurements across the entire spray cross section or through several chords providing a representative sample of the overall spray cross section. The aim of multiple-chord measurements is to obtain a single droplet size distribution that characterizes the whole spray rather than values from a single chordal measurement.

1.4 Use of this guide requires that the instrument does not interfere with spray production and does not significantly impinge upon or disturb the co-flow of gas and the spray. This technique is, therefore, considered non-intrusive.

1.5 The computation of droplet size distributions from the light-scattering distributions is done using Mie scattering theory or Fraunhofer diffraction approximation. The use of Mie theory accounts for light refracted through the droplet and there is a specific requirement for knowledge of both real (refractive) and imaginary (absorptive) components of the complex index of refraction. Mie theory also relies on an assumption of droplet homogeneity. The Fraunhofer diffraction approximation does not account for light refracted through the droplet and does not require knowledge of the index of refraction.

1.6 The instruments shall include data-processing capabilities to convert the LD scattering intensities into droplet size distribution parameters in accordance with Practice E799 and Test Method E1260.

1.7 The spray is visible and accessible to the collimated beam produced by the transmitter optics of the LD instrument. The shape and size of the spray shall be contained within the working distance of the LD system optics as specified by the instrument manufacturer.

ASTM E2872-14 Referenced Document

  • ASTM E1260 Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments
  • ASTM E1620 Standard Terminology Relating to Liquid Particles and Atomization
  • ASTM E799 Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis

ASTM E2872-14 history

  • 2024 ASTM E2872-14(2024) Standard Guide for Determining Cross-Section Averaged Characteristics of a Spray Using Laser-Diffraction Instruments in a Wind Tunnel Apparatus
  • 2019 ASTM E2872-14(2019) Standard Guide for Determining Cross-Section Averaged Characteristics of a Spray Using Laser-Diffraction Instruments in a Wind Tunnel Apparatus
  • 2014 ASTM E2872-14 Standard Guide for Determining Cross-Section Averaged Characteristics of a Spray Using Laser-Diffraction Instruments in a Wind Tunnel Apparatus
Standard Guide for Determining Cross-Section Averaged Characteristics of a Spray  Using Laser-Diffraction Instruments in a Wind Tunnel Apparatus



Copyright ©2024 All Rights Reserved