ASTM D6066-11
Standard Practice for Determining the Normalized Penetration Resistance of Sands for Evaluation of Liquefaction Potential

Standard No.
ASTM D6066-11
Release Date
2011
Published By
American Society for Testing and Materials (ASTM)
Latest
ASTM D6066-11
Scope

Normalization of penetration resistance data is a frequently used method to evaluate the liquefaction susceptibility of sands. A large case history database from many countries has been accumulated to estimate instability of saturated sands during earthquakes (1,2,3,4). This test is used extensively for a great variety of geotechnical exploration programs where earthquake induced instability of soil needs to be evaluated. Many widely published correlations and local correlations are available, which relate penetration resistance to the engineering properties of soils and the behavior of earthworks and foundations. The data from different countries with differing drilling techniques have been interpreted to develop a preferred normalization approach. This approach has been termed the N1 method proposed by H. Bolton Seed and his colleagues (2,3). Evaluation of liquefaction potential is beyond the scope of this practice. Interpretation of normalized penetration resistance values should be performed by qualified personnel familiar with the multitude of factors influencing interpretation of the data. One purpose of this practice is to attempt to develop a more accurate data base of penetration resistance data from future liquefaction case histories. The normalized penetration resistance determined in this practice may be useful for determination of other engineering properties of sands.

This practice is based on field studies of limited depth and chamber testing of limited stress conditions (1,2,5,6). The existing data bases also are limited in soil types examined. Drilling equipment and methods vary widely from country to country. The majority of data is obtained using the fluid rotary method of drilling with small drill rods and donut or safety type hammers. Some studies have shown that other drilling methods, such as hollow stem augers can be used to successfully collect penetration resistance data (7,8). When using alternate drilling methods, however, it is easier to cause disturbance, and potential disturbance must be evaluated carefully. If there is any question regarding disturbance from alternative drilling methods, use of fluid rotary drilling is recommended.

A majority of case history liquefaction data has been collected at shallow depths of less than 50 ft. Stress correction information is limited to 3 to 6 ton/ft2 (3000 to 6000 kPa) range. Knowledge is limited for energy transmission effects with drill rod lengths exceeding 100 to 150 ft (30 to 45 m).

This practice is limited to evaluation of level ground sites. For soils subjected to non-level ground conditions, other correction factors may be required (3).

Note 28212;The reliability of data and interpretations generated by this practice is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 generally are considered capable of competent testing. Users of this practice are cautioned that compliance with Practice D3740 does not assure reliable testing. Reliable testing depends on several factors and Practice D3740 provides a means of evaluating some of these factors.

This practice is dependent on existing data and the currently accepted practice for measurement of drill rod energy ratio, ERi, Test Method