ASTM D4647-06e1
Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test

Standard No.
ASTM D4647-06e1
Release Date
2006
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM D4647/D4647M-13
Latest
ASTM D4647/D4647M-13(2020)
Scope

The pinhole test provides one method of identifying the dispersive characteristics of clay soils that are to be or have been used in earth construction. The piping failures of a number of homogeneous earth dams, erosion along channel or canal banks, and rainfall erosion of earthen structures have been attributed to the colloidal erosion along cracks or other flow channels formed in masses of dispersive clay (2).

This test method models the action of water flowing along a crack in an earth embankment. Other indirect tests, such as the double hydrometer test (Test Method D 4221), the crumb test (3, 4), that relates the turbidity of a cloud of suspended clay colloids as an indicator of the clay dispersivity, and chemical tests that relate the percentage of sodium to total soluble salt content of the soil are also used as indicator tests of clay dispersibility (2). The comparison of results from the pinhole test and other indirect tests on hundreds of samples indicates that the results of the pinhole test have the best correlation with the erosional performance of clay soils in nature.

Method A and Method C of the pinhole test require the evaluation of cloudiness of effluent, final size of the pinhole, and computation of flow rates through the pinhole in order to classify the dispersive characteristics of the soil. Method B requires only the evaluation of the cloudiness of effluent and final size of the pinhole to classify the dispersive characteristics of the soil. The computation of flow rates through the pinhole in Method A serves primarily as a guide to the proper equipment and specimen performance under sequential pressures applied during the test. All methods produce similar results and any method can be used to identify dispersive clays.

The use of Method A or Method C results in the accumulation of data relative to sequential flow rates through the pinhole and consequent enlargement or erosion of the hole. The pinhole erosion test was developed for the purpose of identifying dispersive soils and is not intended to be a geometrically scaled model of a prototype structure. Since the theory of similitude was not used in the design of the pinhole test, quantitative data are not obtained. The quantity of flow through the pinhole, amount of soil erosion, or the rate of soil erosion should not be extrapolated to actual field conditions (3). However, such data may be useful in performing qualitative evaluations of the consequences of such erosion in terms of dam failure, loss of life and property. They also may be used in considering the cost effectiveness of defensive design measures necessary to minimize the effects of failure due to dispersive clays. For example, the amount of colloidal erosion that will occur in a soil classed as ND2 (very slightly dispersive) will be very small for a relatively long period of time. Such erosion may not be significant in evaluating the cost-benefit relationships in projects where public safety is not involved or where normal maintenance procedures will handle the problem. In such cases, classifying the soil as ND (nondispersive) using Method B of the pinhole test should be adequate.

Pinhole tests that result in classifying soil as slightly dispersive (ND3 by Method A or Method C or SD by Method B) indicate high uncertainty about the existence of significant problems to be considered in the design or stability of a structure. In such cases, it is advisable to resample and test a number of other soils from the same area to generate an adequate statistical sample for problem evaluation. The original slightly dispersive sample may come from an area on the edge of a more highly dispersive soil.

In a few physiographic areas or geoclimatic conditions, or both, neither the pinhole ......

ASTM D4647-06e1 history

  • 2020 ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
  • 2013 ASTM D4647/D4647M-13 Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
  • 2006 ASTM D4647-06e1 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
  • 2006 ASTM D4647-06 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
  • 2006 ASTM D4647-93(2006) Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
  • 1993 ASTM D4647-93(1998)e1 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test



Copyright ©2024 All Rights Reserved