SAE AIR1387C-2003
Designing with Elastomers for Use at Low Temperatures, Near or Below Glass Transition

Standard No.
SAE AIR1387C-2003
Release Date
2003
Published By
Society of Automotive Engineers (SAE)
Status
Replace By
SAE AIR1387A-2011
Latest
SAE AIR1387D-2016
Scope
To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures. There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25). The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience. In this way, it is hoped that mistakes can be avoided, particularly in selection of rubber materials, enabling the design engineer to weigh low-temperature material properties together with the many other factors involved in the design process.

SAE AIR1387C-2003 Referenced Document

  • ASTM D1043-02 Standard Test Method for Stiffness Properties of Plastics as a Function of Temperature by Means of a Torsion Test
  • ASTM D1229-03 Standard Test Method for Rubber Property8212;Compression Set at Low Temperatures
  • ASTM D1329-02 Standard Test Method for Evaluating Rubber Property8212;Retraction at Lower Temperatures (TR Test)
  • ASTM D797-82 Test Method for Rubber Property-Young's Modulus at Normal and Subnormal Temperatures
  • ASTM E756-98 Standard Test Method for Measuring Vibration-Damping Properties of Materials
  • SAE AMS7258 RINGS, SEALING, BUTADIENE-ACRYLONITRILE RUBBER Fuel Resistant, Low Shrinkage NBR Type, 65 - 75

SAE AIR1387C-2003 history

  • 2016 SAE AIR1387D-2016 DESIGNING WITH ELASTOMERS FOR USE AT LOW TEMPERATURES
  • 2011 SAE AIR1387A-2011 DESIGNING WITH ELASTOMERS FOR USE AT LOW TEMPERATURES
  • 2003 SAE AIR1387C-2003 Designing with Elastomers for Use at Low Temperatures, Near or Below Glass Transition
  • 1995 SAE AIR1387B-1995 Designing with Elastomers for Use at Low Temperatures@ Near or Below Glass Transition
  • 1976 SAE AIR1387-1976 DESIGNING WITH ELASTOMERS FOR USE AT LOW TEMPERATURES



Copyright ©2024 All Rights Reserved