BS ISO 18315:2018
Nuclear energy. Guidance to the evaluation of measurement uncertainties of impurity in uranium solution by linear regression analysis

Standard No.
BS ISO 18315:2018
Release Date
2018
Published By
British Standards Institution (BSI)
Latest
BS ISO 18315:2018
Scope
What is this standard about? This document provides a method for evaluation of the measurement uncertainty arising when an impurity content of uranium solution is determined by a regression line that has been fitted by the “method of least squares”. It is intended to be used by chemical analyzers. Simple linear regression, hereinafter called “basic regression”, is defined as a model with a single independent variable that is applied to fit a regression line through n different data points (xi, yi) (i = 1,…, n) in such a way that makes the sum of squared errors, i.e. the squared vertical distances between the data points and the fitted line, as small as possible. For the linear calibration, “classical regression” or “inverse regression” is usually used; however, they are not convenient. Instead, “reversed inverse regression” is used in this document. Reversed inverse regression treats y (the reference solutions) as the response and x (the observed measurements) as the inputs; these values are used to fit a regression line of y on x by the method of least squares. This regression is distinguished from basic regression in that the xi’s (i = 1,…, n) vary according to normal distributions but the yi’s (i = 1,…, n) are fixed; in basic regression, the yi’s vary but the xi’s are fixed. NOTE 1 In the case of classical regression, the fitted regression line is inverted prior to actual sample measurement. In the case of inverse regression, the roles of x and y are not consistent with the convention that the variable x represents the inputs, whereas the variable y represents the response. For these reasons, the two regressions are excluded from this document. NOTE 2 The term “reversed inverse regression” was suggested taking into account the history of regression analysis theory. Instead, it can be desirable to use some other term, e.g. “pseudo-basic regression”.

BS ISO 18315:2018 history

  • 2018 BS ISO 18315:2018 Nuclear energy. Guidance to the evaluation of measurement uncertainties of impurity in uranium solution by linear regression analysis
Nuclear energy. Guidance to the evaluation of measurement uncertainties of impurity in uranium solution by linear regression analysis



Copyright ©2024 All Rights Reserved